Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 9 задач
Версия для печати
Убрать все задачи

Назовем тропинкой замкнутую траекторию на плоскости, состоящую из дуг окружностей и проходящую через каждую свою точку ровно один раз. Приведите пример тропинки и такой точки M на ней, что любая прямая, проходящая через M, делит тропинку пополам, то есть сумма длин всех кусков тропинки в одной полуплоскости равна сумме длин всех кусков тропинки в другой полуплоскости.

Вниз   Решение


Отрезки, соединяющие основания высот остроугольного треугольника, равны 8, 15 и 17. Найдите площадь треугольника.

ВверхВниз   Решение


У Ивана-царевича есть два волшебных меча. Первым он может отрубить Змею Горынычу 21 голову. Вторым – 4 головы, но при этом у Змея Горыныча отрастает 2006 голов. Может ли Иван отрубить Змею Горынычу все головы, если в самом начале у него было 100 голов? (Если, например, у Змея Горыныча осталось лишь три головы, то рубить их ни тем, ни другим мечом нельзя.)

ВверхВниз   Решение


Пусть f(x)=x2+ax+b cos x . Найдите все значения параметров a и b , при которых уравнения f(x)=0 и f(f(x))=0 имеют совпадающие непустые множества действительных корней.

ВверхВниз   Решение


Числовое множество M, содержащее 2003 различных числа, таково, что для каждых двух различных элементов a, b из M число
   рационально. Докажите, что для любого a из M число    рационально.

ВверхВниз   Решение


В колоде 52 карты, по 13 каждой масти. Ваня вынимает из колоды по одной карте. Вынутые карты в колоду не возвращаются. Каждый раз перед тем, как вынуть карту, Ваня загадывает какую-нибудь масть. Докажите, что если Ваня каждый раз будет загадывать масть, карт которой в колоде осталось не меньше, чем карт любой другой масти, то загаданная масть совпадет с мастью вынутой карты не менее 13 раз.

ВверхВниз   Решение


Автор: Сонкин М.

Окружность S с центром O и окружность S' пересекаются в точках A и B. На дуге окружности S, лежащей внутри S', взята точка C. Точки пересечения прямых AC и BC с S', отличные от A и B, обозначим через E и D соответственно. Докажите, что прямые DE и OC перпендикулярны.

ВверхВниз   Решение


В первые 1999 ячеек компьютера в указанном порядке записаны числа: 1, 2, 4, 21998 . Два программиста по очереди уменьшают за один ход на единицу числа в пяти различных ячейках. Если в одной из ячеек появляется отрицательное число, то компьютер ломается, и сломавший его оплачивает ремонт. Кто из программистов может уберечь себя от финансовых потерь независимо от ходов партнера, и как он должен для этого действовать?

ВверхВниз   Решение


a, b и n – натуральные числа, и n нечётно. Докажите, что если числитель и знаменатель дроби     делятся на n, то и сама дробь делится на n.

Вверх   Решение

Задача 78218
Темы:    [ Разложение на множители ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 8,9,10
Из корзины
Прислать комментарий

Условие

a, b и n – натуральные числа, и n нечётно. Докажите, что если числитель и знаменатель дроби     делятся на n, то и сама дробь делится на n.


Решение

По условию  a ≡ – b (mod n),  а значит,   = an–1an–2b + ... – abn–1 + bnnbn–1 ≡ 0 (mod n).

Замечания

1. В исходном варианте задачи (на Московской олимпиаде) условие нечётности отсутствовало. Но тогда утверждение неверно: контрпример
a = b = 1,  n = 2.

2. Ср. с задачей 78682.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 23
Год 1960
вариант
1
Класс 10
Тур 1
задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .