Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 8 задач
Версия для печати
Убрать все задачи

Даны вершины A и C равнобедренной описанной трапеции ABCD (AD| BC); известны также направления ее оснований. Постройте вершины B и D.

Вниз   Решение


Из произвольной точки M, лежащей внутри данного угла с вершиной A, опущены перпендикуляры MP и MQ на стороны угла. Из точки A опущен перпендикуляр AK на отрезок PQ. Докажите, что  $ \angle$PAK = $ \angle$MAQ.

ВверхВниз   Решение


Косинус угла между скрещивающимися прямыми AB и CD равен . Точки E и F являются серединами отрезков AB и CD соответственно, а прямая EF перпендикулярна прямым AB и CD . Найдите угол ACB , если известно, что AB = 2 , CD = 2 , EF = .

ВверхВниз   Решение


Вершина A остроугольного треугольника ABC соединена отрезком с центром O описанной окружности. Из вершины A проведена высота AH. Докажите, что  $ \angle$BAH = $ \angle$OAC.

ВверхВниз   Решение


На окружности взяты точки A, B, C и D. Прямые AB и CD пересекаются в точке M. Докажите, что  AC . AD/AM = BC . BD/BM.

ВверхВниз   Решение


Гипотенуза AB прямоугольного треугольника ABC равна 2 и является хордой некоторой окружности. Катет AC равен 1 и лежит внутри окружности, а его продолжение пересекает окружность в точке D, причём  CD = 3.  Найдите радиус окружности.

ВверхВниз   Решение


В треугольнике ABC на сторонах AB, BC и AD взяты соответственно точки K, L и M. Известно, что AK = 5, KB = 3, BL = 2, LC = 7, CM = 1, MA = 6, Найдите расстояние от точки M до середины KL.

ВверхВниз   Решение


За дядькой Черномором выстроилось чередой бесконечное число богатырей. Доказать, что он может приказать части из них выйти из строя так, чтобы в строю осталось бесконечно много богатырей и все они стояли по росту (не обязательно в порядке убывания роста).

Вверх   Решение

Задача 79475
Темы:    [ Последовательности (прочее) ]
[ Принцип крайнего (прочее) ]
[ Частичные, верхние и нижние пределы ]
Сложность: 4-
Классы: 9
Из корзины
Прислать комментарий

Условие

За дядькой Черномором выстроилось чередой бесконечное число богатырей. Доказать, что он может приказать части из них выйти из строя так, чтобы в строю осталось бесконечно много богатырей и все они стояли по росту (не обязательно в порядке убывания роста).

Решение

Пусть в череде богатырей не существует богатыря наименьшего роста. Это означает, что для каждого богатыря найдётся богатырь меньшего роста и тогда искомая цепочка легко строится последовательным выбором все меньших и меньших по росту богатырей. Если же имеется богатырь A1 наименьшего роста, то отбрасываем его и среди оставшихся выбираем богатыря A2 с наименьшим ростом (если же такого A2 нет, то для оставшихся проходит описанное выше рассуждение и утверждение задачи доказано). Далее, отбрасывая A1 и A2, из остальных богатырей выбираем A3 с наименьшим ростом (если такого A3 нет, то всё доказано), потом A4, A5 и т. д. В результате получаем цепочку стоящих по росту богатырей A1, A2, A3, ....

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 48
Год 1985
вариант
Класс 8
задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .