ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 98335
Темы:    [ Выпуклые и невыпуклые фигуры (прочее) ]
[ Перегруппировка площадей ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

F – выпуклая фигура с двумя взаимно перпендикулярными осями симметрии. Через точку M, лежащую внутри фигуры и отстоящую от осей на расстояния a и b, провели прямые, параллельные осям. Эти прямые делят F на четыре области. Найдите разность между суммой площадей большей и меньшей из областей и суммой площадей двух других.


Решение

Отразив область CMD (см. рис.) относительно вертикальной оси симметрии, а область AMB – относительно горизонтальной, мы наложим их на большую область AMD.

При этом останется непокрытым прямоугольник KLMN, а участок EKF (в силу симметрии равный меньшей области BMC) будет покрыт дважды. Поэтому
(SAMD + SBMC) – (SAMB + SCMD) = SKLMN = 4ab.


Ответ

4ab.

Замечания

4 балла

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Номер 18
Дата 1996/1997
вариант
Вариант весенний тур, тренировочный вариант, 8-9 класс
Задача
Номер 3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .