Страница: 1 [Всего задач: 5]
Задача
98333
(#1)
|
|
Сложность: 3- Классы: 7,8,9
|
Сколько целых чисел от 1 до 1997 имеют сумму цифр, делящуюся на 5?
Задача
98334
(#2)
|
|
Сложность: 2+ Классы: 6,7,8
|
Барон Мюнхаузен утверждает, что пустил шар от борта бильярда, имеющего форму правильного треугольника, так, что тот, отражаясь от бортов, прошёл через некоторую точку три раза в трёх различных направлениях и вернулся в исходную точку. Могут ли слова барона быть правдой? (Отражение шара от борта происходит по закону "угол падения равен углу отражения".)
Задача
98335
(#3)
|
|
Сложность: 3 Классы: 8,9
|
F – выпуклая фигура с двумя взаимно перпендикулярными осями симметрии. Через точку M, лежащую внутри фигуры и отстоящую от осей на расстояния a и b, провели прямые, параллельные осям. Эти прямые делят F на четыре области. Найдите разность между суммой площадей большей и меньшей из областей и суммой площадей двух других.
Задача
98336
(#4)
|
|
Сложность: 3 Классы: 7,8,9
|
Квадрат разрезали на 25 квадратиков, из которых ровно у одного сторона имеет длину, отличную от 1 (у каждого из остальных сторона равна 1).
Найдите площадь исходного квадрата.
Задача
98337
(#5)
|
|
Сложность: 3+ Классы: 8,9
|
В параллелограмме ABCD точка E – середина AD. Точка F – основание перпендикуляра, опущенного из B на прямую CE.
Докажите, что треугольник ABF – равнобедренный.
Страница: 1 [Всего задач: 5]