ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Кириллов А.А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 2]      



Задача 73598

Темы:   [ Замощения костями домино и плитками ]
[ Четность и нечетность ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 7,8,9

Можно ли из 18 плиток размером 1×2 выложить квадрат так, чтобы при этом не было ни одного прямого «шва», соeдиняющего противоположные стороны квадрата и идущего по краям плиток?

Например, такое расположение плиток, как на рисунке, не годится, так как здесь есть красный «шов».
Прислать комментарий     Решение


Задача 73729

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Геометрические интерпретации в алгебре ]
[ Уравнения в целых числах ]
[ Целочисленные решетки ]
Сложность: 6+
Классы: 8,9,10

Даны два взаимно простых натуральных числа a и b. Рассмотрим множество M целых чисел, представимых в виде  ax + by,  где x и y — целые неотрицательные числа.
   а)  Каково наибольшее целое число c, не принадлежащее множеству М?
   б)  Докажите, что из двух чисел n и  сn  (где n — любое целое) одно принадлежит М, а другое нет.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 2]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .