ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Диомидов Е.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 2]      



Задача 65791

Темы:   [ Конкуррентность высот. Углы между высотами. ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 8,9

В остроугольном треугольнике ABC  AH1, BH2 – высоты, D – проекция H1 на AC, E – проекция D на AB,  F – точка пересечения ED и AH1. Докажите, что  H2F || BC.

Прислать комментарий     Решение

Задача 64806

Темы:   [ Построение треугольников по различным элементам ]
[ Прямая Эйлера и окружность девяти точек ]
[ Поворот помогает решить задачу ]
[ Гомотетия: построения и геометрические места точек ]
Сложность: 4
Классы: 9,10

Дан острый угол с вершиной A и точка E внутри него. Построить на сторонах угла точки B, C так, чтобы E была центром окружности Эйлера треугольника ABC.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 2]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .