ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 >> [Всего задач: 15]      



Задача 65608  (#10.1.1)

Темы:   [ Исследование квадратного трехчлена ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 9,10,11

Известно, что  b – c > a  и  а ≠ 0.  Обязательно ли уравнение  ax2 + bx + c = 0  имеет два корня?

Прислать комментарий     Решение

Задача 65609  (#10.1.2)

Темы:   [ Пятиугольники ]
[ Правильные многоугольники ]
[ Вспомогательные равные треугольники ]
Сложность: 3
Классы: 9,10,11

В выпуклом пятиугольнике равны все стороны, а также равны четыре из пяти диагоналей. Следует ли из этого условия, что пятиугольник – правильный?

Прислать комментарий     Решение

Задача 65610  (#10.1.3)

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
Сложность: 3
Классы: 9,10,11

Найдите все натуральные n и k, удовлетворяющие равенству  k5 + 5n4 = 81k.

Прислать комментарий     Решение

Задача 65611  (#10.2.1)

Темы:   [ Формулы сокращенного умножения (прочее) ]
[ Рациональные и иррациональные числа ]
Сложность: 3+
Классы: 9,10,11

Существует ли такое натуральное n, что  

Прислать комментарий     Решение

Задача 65612  (#10.2.2)

Темы:   [ Перегруппировка площадей ]
[ Медиана делит площадь пополам ]
Сложность: 3
Классы: 9,10,11

В выпуклом четырёхугольнике ABCD отмечены середины противоположных сторон BC и AD– точки M и N. Диагональ AC проходит через середину отрезка MN.
Найдите площадь АВСD, если площадь треугольника АВС равна S.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы, Московского института открытого образования и ФЦП "Кадры" .