ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 90]      



Задача 116563

Темы:   [ Рациональные и иррациональные числа ]
[ Тождественные преобразования (тригонометрия) ]
[ Доказательство от противного ]
Сложность: 2+
Классы: 10,11

Существует ли такое вещественное α, что число cos α иррационально, а все числа cos 2α, cos 3α, cos 4α, cos 5α рациональны?

Прислать комментарий     Решение

Задача 60845

Темы:   [ Рациональные и иррациональные числа ]
[ Периодические и непериодические дроби ]
[ Доказательство от противного ]
Сложность: 3
Классы: 7,8,9

Пусть число α задается десятичной дробью
  а) 0,101001000100001000001...;
  б) 0,123456789101112131415....
Будет ли это число рациональным?

Прислать комментарий     Решение

Задача 61014

Темы:   [ Рациональные и иррациональные числа ]
[ Многочлены (прочее) ]
Сложность: 3
Классы: 8,9,10

Выведите из теоремы 61013 то, что   – иррациональное число.

Прислать комментарий     Решение

Задача 60865

Темы:   [ Рациональные и иррациональные числа ]
[ Тождественные преобразования (тригонометрия) ]
Сложность: 3
Классы: 9,10

Докажите, что при x≠πn (n– целое) sin x и cos x рациональны тогда и только тогда, когда число tg $ {\dfrac{x}{2}}$ рационально.

Прислать комментарий     Решение

Задача 35105

Темы:   [ Рациональные и иррациональные числа ]
[ Корни. Степень с рациональным показателем (прочее) ]
[ Показательные функции и логарифмы (прочее) ]
Сложность: 3+
Классы: 10,11

Существуют ли такие иррациональные числа a и b, что степень ab - число рациональное?
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 90]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .