ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 87046

Тема:   [ Геометрия (прочее) ]
Сложность: 2
Классы: 10,11


Пусть M - точка пересечения медиан треугольника ABC, O - произвольная точка пространства. Докажите, что

OM2 = $\displaystyle {\textstyle\frac{1}{3}}$(OA2 + OB2 + OC2) - $\displaystyle {\textstyle\frac{1}{9}}$(AB2 + BC2 + AC2).

Прислать комментарий     Решение

Задача 87048

Тема:   [ Геометрия (прочее) ]
Сложность: 2
Классы: 10,11


Даны три некомпланарных вектора. Существует ли четвертый вектор, перпендикулярный трем данным?

Прислать комментарий     Решение


Задача 87266

Тема:   [ Геометрия (прочее) ]
Сложность: 2
Классы: 10,11


Найдите объем наклонной треугольной призмы, основанием которой служит равносторонний треугольник со стороной, равной a, если боковое ребро призмы равно стороне основания и наклонено к плоскости основания под углом 60o.

Прислать комментарий     Решение


Задача 87364

Тема:   [ Геометрия (прочее) ]
Сложность: 3+
Классы: 10,11


Сфера радиуса $ \sqrt{5}$ с центром в точке O касается всех сторон треугольника ABC. Точка касания N делит сторону AB пополам. Точка касания M делит сторону AC так, что AM = $ {\frac{1}{2}}$MC. Найдите объем пирамиды OABC, если известно, что AN = NB = 1.

Прислать комментарий     Решение


Задача 87366

Тема:   [ Геометрия (прочее) ]
Сложность: 3+
Классы: 10,11


Сфера радиуса 3/2 имеет центр в точке N. Из точки K, находящейся на расстоянии 3$ \sqrt{5}$/2 от центра сферы, проведены две прямые KL и KM, касающиеся сферы в точках L и M соответственно. Найдите объем пирамиды KLMN, если известно, что ML = 2.

Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .