ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 38]      



Задача 101872

Темы:   [ Описанные четырехугольники ]
[ Четырехугольник: вычисления, метрические соотношения. ]
Сложность: 4
Классы: 8,9

В четырехугольник ABCD можно вписать окружность. Пусть K — точка пересечения его диагоналей. Известно, что BC > AB > KC, KC = 6 + $ \sqrt{14}$, а периметр и площадь треугольника BKC равны соответственно 22 и 11. Найдите DC.

Прислать комментарий     Решение


Задача 101873

Темы:   [ Описанные четырехугольники ]
[ Четырехугольник: вычисления, метрические соотношения. ]
Сложность: 4
Классы: 8,9

В четырехугольник ABCD можно вписать окружность. Пусть K — точка пересечения его диагоналей. Известно, что AB > BC > BK, BK = $ \sqrt{14}$ + 2, косинус угла BCK равен ( $ \sqrt{14}$ - 2) /6, а периметр треугольника BKC равен 2$ \sqrt{14}$ + 6. Найдите DC.

Прислать комментарий     Решение


Задача 53603

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ ГМТ - прямая или отрезок ]
[ Четырехугольник: вычисления, метрические соотношения. ]
Сложность: 3
Классы: 8,9

Докажите, что диагонали четырёхугольника перпендикулярны тогда и только тогда, когда суммы квадратов его противоположных сторон равны.

Прислать комментарий     Решение

Задача 109459

Темы:   [ Вспомогательные подобные треугольники ]
[ Теорема Пифагора (прямая и обратная) ]
[ Четырехугольник: вычисления, метрические соотношения. ]
Сложность: 3+
Классы: 8,9

В выпуклом четырехугольнике ABCD выполняются равенства:  ∠CBD = ∠CAB  и  ∠ACD = ∠ADB.
Докажите, что из отрезков BC, AD и AC можно сложить прямоугольный треугольник.

Прислать комментарий     Решение

Задача 53877

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Теорема косинусов ]
[ Четырехугольник: вычисления, метрические соотношения. ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 4+
Классы: 8,9

В трапеции основания равны a и b, диагонали перпендикулярны, а угол между боковыми сторонами равен $ \alpha$. Найдите площадь трапеции.

Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 38]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .