ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]      



Задача 56786

Темы:   [ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Четырехугольник: вычисления, метрические соотношения. ]
[ Отношение площадей подобных треугольников ]
Сложность: 4
Классы: 8,9,10

Отрезок MN, параллельный стороне CD четырехугольника ABCD, делит его площадь пополам (точки M и N лежат на сторонах BC и AD). Длины отрезков, проведенных из точек A и B параллельно CD до пересечения с прямыми BC и AD, равны a и b. Докажите, что  MN2 = (ab + c2)/2, где c = CD.
Прислать комментарий     Решение


Задача 108481

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Четырехугольник: вычисления, метрические соотношения. ]
Сложность: 4
Классы: 8,9

Четырёхугольник разделен диагоналями на четыре треугольника. Площади трёх из них равны 10, 20 и 30, и каждая меньше площади четвёртого треугольника. Найдите площадь данного четырёхугольника.
Прислать комментарий     Решение


Задача 111674

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Четырехугольник: вычисления, метрические соотношения. ]
Сложность: 4
Классы: 8,9

Выпуклый четырёхугольник разбит диагоналями на четыре треугольника, площади которых выражаются целыми числами. Докажите, что произведение этих чисел предвтавляет собой точный квадрат.
Прислать комментарий     Решение


Задача 111675

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Четырехугольник: вычисления, метрические соотношения. ]
Сложность: 4
Классы: 8,9

Диагонали четырёхугольника ABCD пересекаются в точке P , причём SΔ ABP2+SΔ CDP2= SΔ BCP2+SΔ ADP2 . Докажите, что P — середина одной из диагоналей.
Прислать комментарий     Решение


Задача 101870

Темы:   [ Описанные четырехугольники ]
[ Четырехугольник: вычисления, метрические соотношения. ]
Сложность: 4
Классы: 8,9

В четырехугольник ABCD можно вписать окружность. Пусть K — точка пересечения его диагоналей. Известно, что AB > BC > KC, BK = 4 + $ \sqrt{2}$, а периметр и площадь треугольника BKC равны соответственно 14 и 7. Найдите DC.

Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .