Страница: 1
2 3 4 5 6 7 >> [Всего задач: 78]
Из середины гипотенузы восставлен перпендикуляр до пересечения с катетом, и полученная точка соединена с концом другого катета отрезком, который делит угол треугольника в отношении 2 : 5 (меньшая часть – при гипотенузе). Найдите этот угол.
Докажите, что серединный перпендикуляр к отрезку есть геометрическое место точек, равноудалённых от концов этого отрезка.
Докажите, что серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.
В треугольнике ABC известно, что AB = BC, AC = 10. Из середины D стороны AB проведён перпендикуляр DE к стороне AB до пересечения со стороной BC в точке E. Периметр треугольника ABC равен 40. Найдите периметр треугольника AEC.
Серединные перпендикуляры к диагоналям
BD и
AC
вписанного четырёхугольника
ABCD пересекают сторону
AD в точках
X и
Y соответственно. Докажите, что
середина стороны
BC равноудалена от прямых
BX и
CY .
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 78]