ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Берлов С.Л.

Сергей Львович Берлов - преподаватель физико-математического лицея 239 города Санкт-Петербурга, кандидат физико-математических наук, член жюри Всероссийской олимпиады школьников по математике, серебряный призер Международной математической олимпиады 1988 г.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 118]      



Задача 35632

Тема:   [ Комбинаторика (прочее) ]
Сложность: 3+
Классы: 8,9

В мешке изюма содержится 2001 изюминка общим весом 1001 г, причём ни одна изюминка не весит больше 1,002 г.
Докажите, что весь изюм можно разложить на две чаши весов так, чтобы они показали разность, не превосходящую 1 г.

Прислать комментарий     Решение

Задача 64761

Темы:   [ Арифметика остатков (прочее) ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9,10

По кругу расставлены 99 натуральных чисел. Известно, что каждые два соседних числа отличаются или на 1, или на 2, или в два раза.
Докажите, что хотя бы одно из этих чисел делится на 3.

Прислать комментарий     Решение

Задача 64781

Темы:   [ Делимость чисел. Общие свойства ]
[ Простые числа и их свойства ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 10,11

Натуральное число n назовём хорошим, если каждый его натуральный делитель, увеличенный на 1, является делителем числа  n + 1.
Найдите все хорошие натуральные числа.

Прислать комментарий     Решение

Задача 65065

Темы:   [ Четырехугольники (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательные равные треугольники ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9

В выпуклом четырёхугольнике ABCD выполнены соотношения  AB = BD,  ∠ABD = ∠DBC.  На диагонали BD нашлась такая точка K, что  BK = BC.
Докажите, что  ∠KAD = ∠KCD.

Прислать комментарий     Решение

Задача 65088

Темы:   [ Задачи на движение ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 3+
Классы: 8,9

Бизнесмен Борис Михайлович решил устроить с трактористом Васей гонки по шоссе. Поскольку его "Лексус" едет вдесятеро быстрее Васиного трактора, он дал Васе фору и выехал через час после Васи. После того, как Васин трактор проехал ровно половину запланированной трассы, у него отвалилась рессора, поэтому оставшуюся часть пути Вася проехал вдвое медленнее, чем первую. В результате встречи с Васиной рессорой Борису Михайловичу пришлось заехать в оказавшийся рядом сервис на 4 часа, после чего он продолжил путь вдвое медленнее, чем раньше. Докажите, что в результате он отстал от Васи не менее, чем на час.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 118]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .