ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Берлов С.Л.

Сергей Львович Берлов - преподаватель физико-математического лицея 239 города Санкт-Петербурга, кандидат физико-математических наук, член жюри Всероссийской олимпиады школьников по математике, серебряный призер Международной математической олимпиады 1988 г.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 118]      



Задача 109734

Темы:   [ Исследование квадратного трехчлена ]
[ Производная и касательная ]
[ Выпуклость и вогнутость (прочее) ]
Сложность: 4+
Классы: 10,11

Приведенные квадратные трёхчлены  f(x) и g(x) принимают отрицательные значения на непересекающихся интервалах.
Докажите, что найдутся такие положительные числа α и β, что для любого действительного x будет выполняться неравенство αf(x) + βg(x) > 0.

Прислать комментарий     Решение

Задача 109735

Темы:   [ Делимость чисел. Общие свойства ]
[ НОД и НОК. Взаимная простота ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4+
Классы: 9,10,11

a и b – такие различные натуральные числа, что  ab(a + b)  делится на  a² + ab + b².  Докажите, что  |a – b| > .

Прислать комментарий     Решение

Задача 110762

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Неравенства с медианами ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Неравенства для элементов треугольника (прочее) ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 7,8,9

Медианы AA' и BB' треугольника ABC пересекаются в точке M , причем AMB=120o . Докажите, что углы AB'M и BA'M не могут быть оба острыми или оба тупыми.
Прислать комментарий     Решение


Задача 115411

Темы:   [ Малая теорема Ферма ]
[ Арифметика остатков (прочее) ]
Сложность: 4+
Классы: 9,10,11

Даны натуральные числа x и y из отрезка  [2, 100].  Докажите, что при некотором натуральном n число x2n + y2n  – составное.

Прислать комментарий     Решение

Задача 116633

Темы:   [ Делимость чисел. Общие свойства ]
[ НОД и НОК. Взаимная простота ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 8,9,10

Существуют ли три взаимно простых в совокупности натуральных числа, квадрат каждого из которых делится на сумму двух оставшихся?

Прислать комментарий     Решение

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 118]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .