Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 35]
Точки O1 и O2 – центры описанной и
вписанной окружностей равнобедренного треугольника ABC (AB = BC). Описанные окружности треугольников ABC и O1O2A, пересекаются в точках A и D. Докажите, что прямая BD касается описанной окружности треугольника O1O2A.
В равнобедренном треугольнике ABC (AC = BC) точка O – центр описанной окружности, точка I – центр вписанной окружности, а точка D на стороне BC такова, что прямые
OD и BI перпендикулярны. Докажите, что прямые ID и AC
параллельны.
Дан угол с вершиной B. Возьмём произвольную равнобедренную трапецию,
боковые стороны которой лежат на сторонах данного угла. Через две противоположные её вершины проведём касательные к описанной около неё окружности. Через M обозначим точку пересечения этих касательных. Какую фигуру образуют все такие точки M?
|
|
Сложность: 4- Классы: 9,10,11
|
Биссектрисы AD и CE треугольника ABC пересекаются в точке O. Прямая, симметричная AB относительно CE, пересекает прямую, симметричную BC относительно AD, в точке K. Докажите, что KO ⊥ AC.
|
|
Сложность: 4- Классы: 9,10,11
|
Окружность, вписанная в треугольник ABC, касается сторон BC, CA, AB в точках A1, B1, C1
соответственно. Точки A2, B2, C2 – середины дуг BAC, CBA, ACB описанной окружности треугольника ABC. Докажите, что прямые A1A2, B1B2 и C1C2 пересекаются в одной точке.
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 35]