ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Токарев С.И.

Сергей Иванович Токарев - старший преподаватель Ивановского государственного энергетического университета, заведующий отделом задач в журнале "Математика в школе", член жюри Всероссийской олимпиады школьников по математике, создатель летнего турнира математических боёв им. А.П.Савина.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 10 11 12 13 14 15 16 [Всего задач: 78]      



Задача 109898

Темы:   [ Взвешивания ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 5+
Классы: 7,8,9,10

Имеется 8 монет, 7 из которых – настоящие, которые весят одинаково, и одна фальшивая, отличающаяся по весу от остальных. Чашечные весы без гирь таковы, что если положить на их чашки равные грузы, то любая из чашек может перевесить, если же грузы различны по массе, то обязательно перетягивает чашка с более тяжелым грузом. Как за четыре взвешивания наверняка определить фальшивую монету и установить, легче она или тяжелее остальных?
Прислать комментарий     Решение


Задача 67158

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 5+
Классы: 8,9,10,11

Известно, что среди нескольких купюр, номиналы которых – попарно различные натуральные числа, есть ровно $N$ фальшивых. Детектор за одну проверку определяет сумму номиналов всех настоящих купюр, входящих в выбранный нами набор. Докажите, что за $N$ проверок можно найти все фальшивые купюры, если а) $N = 2$; б) $N = 3$.
Прислать комментарий     Решение


Задача 109694

Темы:   [ Геометрия на клетчатой бумаге ]
[ Процессы и операции ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 6
Классы: 9,10,11

В квадрате n×n клеток бесконечной шахматной доски расположены n2 фишек, по одной фишке в каждой клетке. Ходом называется перепрыгивание любой фишкой через соседнюю по стороне фишку, непосредственно за которой следует свободная клетка. При этом фишка, через которую перепрыгнули, с доски снимается. Докажите, что позиция, в которой дальнейшие ходы невозможны, возникнет не ранее, чем через [] ходов.
Прислать комментарий     Решение


Страница: << 10 11 12 13 14 15 16 [Всего задач: 78]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .