Страница:
<< 10 11 12 13 14 15 16 [Всего задач: 78]
|
|
|
Сложность: 5+ Классы: 7,8,9,10
|
Имеется 8 монет, 7 из которых – настоящие, которые весят одинаково, и
одна фальшивая, отличающаяся по весу от остальных. Чашечные весы без гирь
таковы, что если положить на их чашки равные грузы, то любая из чашек может
перевесить, если же грузы различны по массе, то обязательно перетягивает
чашка с более тяжелым грузом. Как за четыре взвешивания наверняка
определить фальшивую монету и установить, легче она или тяжелее остальных?
|
|
|
Сложность: 5+ Классы: 8,9,10,11
|
Известно, что среди нескольких купюр, номиналы которых – попарно различные натуральные числа, есть ровно $N$ фальшивых. Детектор за одну проверку определяет сумму номиналов всех настоящих купюр, входящих в выбранный нами набор. Докажите, что за $N$ проверок можно найти все фальшивые купюры, если а) $N = 2$; б) $N = 3$.
|
|
|
Сложность: 6 Классы: 9,10,11
|
В квадрате
n×
n клеток бесконечной шахматной доски расположены
n2 фишек, по одной фишке в каждой клетке. Ходом называется перепрыгивание
любой фишкой через соседнюю по стороне фишку,
непосредственно за которой следует свободная клетка.
При этом фишка, через которую перепрыгнули, с доски снимается. Докажите, что
позиция, в которой дальнейшие ходы невозможны, возникнет не ранее, чем через
[

]
ходов.
Страница:
<< 10 11 12 13 14 15 16 [Всего задач: 78]