Страница:
<< 24 25 26 27
28 29 30 >> [Всего задач: 181]
Диагонали выпуклого четырёхугольника делят его на четыре подобных треугольника. Докажите, что его можно разрезать на два равных треугольника.
|
|
Сложность: 4- Классы: 8,9,10
|
Вася отвечает теорему Виета: "Сумма трёх коэффициентов квадратного трёхчлена равна одному из его корней, а произведение – другому".
Экзаменатор: "Неверно".
Вася: "Как же неверно? Я проверил для случайно выбранного трёхчлена, и всё получилось".
Какой это мог быть трёхчлен, если его коэффициенты – целые числа?
|
|
Сложность: 4- Классы: 9,10
|
При каком наименьшем n существует выпуклый n-угольник, у которого синусы всех углов равны, а длины всех сторон различны?
|
|
Сложность: 4- Классы: 8,9,10,11
|
Отрезки, соединяющие внутреннюю точку выпуклого неравностороннего n-угольника с его вершинами, делят n-угольник на n равных треугольников.
При каком наименьшем n это возможно?
|
|
Сложность: 4- Классы: 8,9,10,11
|
На окружности отметили n точек. Оказалось, что среди треугольников с вершинами в этих точках ровно половина остроугольных.
Найдите все значения n, при которых это возможно.
Страница:
<< 24 25 26 27
28 29 30 >> [Всего задач: 181]