ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Френкин Б.Р.

Борис Рафаилович Френкин (род. 1947) - кандидат физико-математических наук, сотрудник Московского центра непрерывного математического образования. Соавтор книг "Математика турниров" и "Задачи о турнирах". Член редколлегии сборника "Математическое просвещение", оргкомитета международного математического Турнира городов, жюри Всероссийской олимпиады по геометрии им. И.Ф.Шарыгина.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 181]      



Задача 64904

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

Вписанный n-угольник  (n > 3)  разбит непересекающимися (во внутренних точках) диагоналями на треугольники. Каждый из получившихся треугольников подобен хотя бы одному из остальных. При каких n возможна описанная ситуация?

Прислать комментарий     Решение

Задача 64909

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
Сложность: 3+
Классы: 8,9

В неравнобедренном треугольнике ABC биссектрисы углов A и B обратно пропорциональны противолежащим сторонам. Найдите угол C.

Прислать комментарий     Решение

Задача 65012

Темы:   [ Выпуклые многоугольники ]
[ Разные задачи на разрезания ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10,11

Выпуклый n-угольник разрезан на три выпуклых многоугольника. У одного из них n сторон, у другого – больше чем n, у третьего – меньше чем n.
Каковы возможные значения n?

Прислать комментарий     Решение

Задача 65030

Темы:   [ Правильный (равносторонний) треугольник ]
[ Биссектриса угла (ГМТ) ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведены биссектрисы AA', BB', CC'. Известно, что в треугольнике A'B'C' эти прямые также являются биссектрисами.
Верно ли, что треугольник ABC равносторонний?

Прислать комментарий     Решение

Задача 65031

Темы:   [ Правильный (равносторонний) треугольник ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведён серединный перпендикуляр к стороне AB до пересечения с другой стороной в некоторой точке C'. Аналогично построены точки A' и B'. Для каких исходных треугольников треугольник A'B'C' будет равносторонним?

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 181]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .