Страница: << 1 2 3 >> [Всего задач: 14]
|
|
Сложность: 4+ Классы: 9,10,11
|
По периметру круглого торта диаметром n/p метров расположены n вишенок. Если на концах
некоторой дуги находятся вишенки, то количество остальных вишенок на этой дуге
меньше, чем длина дуги в метрах. Докажите, что торт можно разрезать на n
равных секторов так, что в каждом куске будет по вишенке.
|
|
Сложность: 5- Классы: 9,10,11
|
Решите в натуральных числах уравнение (1 + nk)l = 1 + nm, где l > 1.
|
|
Сложность: 5- Классы: 8,9,10,11
|
В прямоугольной таблице 9 строк и 2004 столбца. В её клетках расставлены числа от 1 до 2004, каждое – по 9 раз. При этом в каждом столбце числа различаются не более чем на 3. Найдите минимальную возможную сумму чисел в первой строке.
Даны N ≥ 3 точек, занумерованных числами 1, 2, ..., N. Каждые две точки соединены стрелкой от меньшего номера к большему. Раскраску всех стрелок в красный и синий цвета назовем однотонной, если нет двух таких точек A и B, что от A до B можно добраться и по красным стрелкам, и по синим. Найдите количество однотонных раскрасок.
|
|
Сложность: 5 Классы: 9,10,11
|
Каждая клетка клетчатой плоскости раскрашена в один из n² цветов так, что в каждом квадрате из n× клеток встречаются все цвета.
Известно, что в какой-то строке встречаются все цвета. Докажите, что существует столбец, раскрашенный ровно в n цветов.
Страница: << 1 2 3 >> [Всего задач: 14]