Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 316]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В ряд выписаны несколько натуральных чисел с суммой 2019. Никакое число и никакая сумма нескольких подряд записанных чисел не равна 40. Какое наибольшее количество чисел могло быть выписано?
|
|
Сложность: 3+ Классы: 6,7,8
|
В сумме
П,Я + Т,Ь + Д,Р + О,Б + Е,Й
все цифры зашифрованы буквами (разными буквами — разные цифры). Оказалось, что все пять слагаемых не целые, но сама сумма является целым числом. Каким именно?
Для каждого возможного ответа напишите один пример с такими пятью слагаемыми. Объясните, почему другие суммы получить нельзя.
|
|
Сложность: 3+ Классы: 9,10
|
Последовательность натуральных чисел a1, a2, ..., an, ... такова, что для каждого n уравнение an+2x² + an+1x + an = 0 имеет действительный корень. Может ли число членов этой последовательности быть
а) равным 10;
б) бесконечным?
|
|
Сложность: 3+ Классы: 10,11
|
При каких n можно раскрасить в три цвета все ребра n-угольной призмы (основания – n-угольники) так, что в каждой вершине сходятся все три цвета и у каждой грани (включая основания) есть стороны всех трёх цветов?
|
|
Сложность: 3+ Классы: 10,11
|
В море плавает предмет, имеющий форму выпуклого многогранника.
Может ли случиться, что 90% его объёма находится ниже уровня воды и при этом больше половины его поверхности находится выше уровня воды?
Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 316]