ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Шаповалов А.В.

Александр Васильевич Шаповалов (род. 1955 г.) - автор книг "Принцип узких мест", "Турнир городов: мир математики в задачах" и других популярных книг по математике. Ответственный редактор серии "Школьные математические кружки". Ведущий преподаватель Кировской ЛМШ и Московских сборов. Член методической комиссии Турнира городов, турнира им. Савина, московского Математического праздника и других соревнований. См. сайт www.ashap.info.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 316]      



Задача 66744

Темы:   [ Деление с остатком. Арифметика остатков ]
[ Последовательности (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

В ряд выписаны несколько натуральных чисел с суммой 2019. Никакое число и никакая сумма нескольких подряд записанных чисел не равна 40. Какое наибольшее количество чисел могло быть выписано?

Прислать комментарий     Решение

Задача 67280

Темы:   [ Десятичные дроби (прочее) ]
[ Ребусы ]
Сложность: 3+
Классы: 6,7,8

В сумме

П,Я + Т,Ь + Д,Р + О,Б + Е,Й

все цифры зашифрованы буквами (разными буквами — разные цифры). Оказалось, что все пять слагаемых не целые, но сама сумма является целым числом. Каким именно? Для каждого возможного ответа напишите один пример с такими пятью слагаемыми. Объясните, почему другие суммы получить нельзя.
Прислать комментарий     Решение

Задача 98217

Темы:   [ Исследование квадратного трехчлена ]
[ Рекуррентные соотношения (прочее) ]
[ Ограниченность, монотонность ]
Сложность: 3+
Классы: 9,10

Последовательность натуральных чисел  a1, a2, ..., an, ...  такова, что для каждого n уравнение  an+2x² + an+1x + an = 0  имеет действительный корень. Может ли число членов этой последовательности быть
  а) равным 10;
  б) бесконечным?

Прислать комментарий     Решение

Задача 98265

Темы:   [ Раскраски ]
[ Призма (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Периодичность и непериодичность ]
Сложность: 3+
Классы: 10,11

При каких n можно раскрасить в три цвета все ребра n-угольной призмы (основания – n-угольники) так, что в каждой вершине сходятся все три цвета и у каждой грани (включая основания) есть стороны всех трёх цветов?

 
Прислать комментарий     Решение

Задача 98438

Темы:   [ Объем тетраэдра и пирамиды ]
[ Боковая поверхность тетраэдра и пирамиды ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 10,11

В море плавает предмет, имеющий форму выпуклого многогранника.
Может ли случиться, что 90% его объёма находится ниже уровня воды и при этом больше половины его поверхности находится выше уровня воды?

Прислать комментарий     Решение

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 316]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .