Страница:
<< 47 48 49 50
51 52 53 >> [Всего задач: 316]
|
|
Сложность: 4 Классы: 9,10,11
|
Клетчатый квадрат 2×2 накрыт двумя треугольниками. Обязательно ли
а) хоть одна из четырёх его клеток целиком накрыта одним из этих треугольников;
б) в один из этих треугольников можно поместить квадрат со стороной 1?
Шайка разбойников отобрала у купца мешок монет. Каждая монета стоит целое
число грошей. Оказалось, что какую бы монету ни отложить, оставшиеся монеты
можно разделить между разбойниками так, чтобы каждый получил одинаковую сумму
в грошах. Докажите, что если отложить одну монету, то число монет разделится на число разбойников.
|
|
Сложность: 4 Классы: 7,8,9
|
За круглым столом были приготовлены 12 мест для жюри с указанием имени на
каждом месте. Николай Николаевич, пришедший первым, по рассеянности сел не на
своё, а на следующее по часовой стрелке место. Каждый член жюри, подходивший к
столу после этого, занимал своё место или, если оно уже было занято, шёл вокруг
стола по часовой стрелке и садился на первое свободное место. Возникшее
расположение членов жюри зависит от того, в каком порядке они подходили к столу.
Сколько может возникнуть различных способов рассадки жюри?
100 гирек веса 1, 2, ..., 100 г разложили на две чаши весов так, что есть
равновесие.
Докажите, что можно убрать по две гирьки с каждой чаши так, что
равновесие не нарушится.
а) На каждом из полей верхней и нижней горизонтали шахматной доски 8×8 стоит по фишке: внизу – белые, вверху – чёрные. За один ход разрешается передвинуть любую фишку на соседнюю свободную клетку по вертикали или горизонтали. За какое наименьшее число ходов можно добиться того, чтобы все чёрные фишки стояли внизу, а белые – вверху?
б) Тот же вопрос для доски 7×7.
Страница:
<< 47 48 49 50
51 52 53 >> [Всего задач: 316]