ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||
Страница: 1 [Всего задач: 2]
Шеренга состоит из N ребят попарно различного роста. Её разбили на наименьшее возможное количество групп стоящих подряд ребят, в каждой из которых ребята стоят по возрастанию роста слева направо (возможны группы из одного человека). Потом в каждой группе переставили ребят по убыванию роста слева направо. Докажите, что после N – 1 такой операции ребята будут стоять по убыванию роста слева направо.
а) Докажите, что можно выбрать такие $2n^2$ спиц, идущих в совокупности всего в одном или двух направлениях, что никакие две из этих спиц не протыкают один и тот же кубик. б) Какое наибольшее количество спиц можно гарантированно выбрать из имеющихся так, чтобы никакие две выбранные спицы не протыкали один и тот же кубик?
Страница: 1 [Всего задач: 2] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |