Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Шаповалов А.В.

Александр Васильевич Шаповалов (род. 1955 г.) - автор книг "Принцип узких мест", "Турнир городов: мир математики в задачах" и других популярных книг по математике. Ответственный редактор серии "Школьные математические кружки". Ведущий преподаватель Кировской ЛМШ и Московских сборов. Член методической комиссии Турнира городов, турнира им. Савина, московского Математического праздника и других соревнований. См. сайт www.ashap.info.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 319]      



Задача 65978

Темы:   [ Взвешивания ]
[ Задачи с неравенствами. Разбор случаев ]
[ Примеры и контрпримеры. Конструкции ]
[ Системы линейных уравнений ]
Сложность: 3+
Классы: 6,7

У аптекаря есть три гирьки, с помощью которых он одному покупателю отвесил 100 г йода, другому – 101 г мёда, а третьему – 102 г перекиси водорода. Гирьки он ставил всегда на одну чашу весов, а товар – на другую. Могло ли быть так, что каждая гирька легче 90 г?

Прислать комментарий     Решение

Задача 66068

Тема:   [ Наглядная геометрия ]
Сложность: 3+
Классы: 6,7

У Саши было четыре раскрашенных кубика. Расставляя их по-разному, он по очереди сфотографировал три фигуры (рис. слева). Затем Саша сложил из них параллелепипед размером 2×2×1 и сделал его черно-белое фото (рис. справа). Все видимые на этом фото грани кубиков одного и того же цвета. Какого?

Прислать комментарий     Решение

Задача 66175

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

На какое наибольшее число равных невыпуклых многоугольников можно разрезать квадрат так, чтобы все стороны многоугольников были параллельны сторонам квадрата и никакие два из этих многоугольников не получались друг из друга параллельным переносом?

Прислать комментарий     Решение

Задача 66178

Темы:   [ Числовые таблицы и их свойства ]
[ Четность и нечетность ]
[ Арифметика остатков (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Принцип Дирихле (прочее) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 7,8,9

В таблицу 2006×2006 вписаны числа 1, 2, 3, ..., 2006².
Докажите, что найдутся такие два числа в клетках с общей стороной или вершиной, что их сумма кратна 4.

Прислать комментарий     Решение

Задача 66322

Темы:   [ Вписанные и описанные окружности ]
[ Покрытия ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
Сложность: 3+
Классы: 8,9

Остроугольный треугольник разбили медианой на два меньших треугольника.
Докажите, что каждый из них можно накрыть полукругом, равным половинке описанного круга исходного треугольника.

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 319]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .