Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 39]
Несколько ребят стоят по кругу. У каждого есть некоторое количество конфет.
Сначала у каждого чётное количество конфет. По команде каждый передает половину
своих конфет стоящему справа. Если после этого у кого-нибудь оказалось нечётное
количество конфет, то ему извне добавляется одна конфета. Это повторяется много
раз. Доказать, что настанет время, когда у всех будет поровну конфет.
a1, a2, a3, ... – возрастающая последовательность натуральных чисел. Известно, что
aak = 3k для любого k.
Найти а) a100; б) a1983.
|
|
Сложность: 4 Классы: 8,9,10
|
Докажите, что существует бесконечное число пар таких соседних натуральных чисел, что разложение каждого из них содержит любой простой сомножитель не менее чем во второй степени. Примеры таких пар чисел: (8, 9), (288, 289).
|
|
Сложность: 4 Классы: 8,9,10
|
Последовательность чисел x1, x2, ... такова, что x1 = ½ и для всякого натурального k.
Найдите целую часть суммы
|
|
Сложность: 4 Классы: 8,9,10
|
Клетки шахматной доски 8×8 как-то занумерованы числами от 1 до 32, причём каждое число использовано дважды. Докажите, что можно так выбрать 32 клетки, занумерованные разными числами, что на каждой вертикали и на каждой горизонтали найдётся хотя бы по одной выбранной клетке.
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 39]