Страница:
<< 1 2 3 4
5 >> [Всего задач: 22]
|
|
Сложность: 4 Классы: 8,9,10,11
|
На экране компьютера напечатано некоторое натуральное число, делящееся на 7, и отмечен курсором промежуток между какими-то двумя его соседними цифрами.
Докажите, что существует такая цифра, что если её впечатать в отмеченный промежуток любое число раз, получится число, делящееся на 7.
|
|
Сложность: 4 Классы: 8,9,10
|
Найдите наибольшее натуральное число, не оканчивающееся нулем, которое при
вычеркивании одной (не первой) цифры уменьшается в целое число раз.
|
|
Сложность: 4+ Классы: 9,10,11
|
Докажите, что если
(
x+
)(
y+
)
=1
, то
x+y=0
.
|
|
Сложность: 5- Классы: 8,9,10,11
|
Для какого наибольшего
n можно придумать две бесконечные в обе стороны
последовательности
A и
B такие, что любой кусок последовательности
B
длиной
n содержится в
A,
A имеет период 1995, а
B этим свойством не
обладает (непериодична или имеет период другой длины)?
Комментарий.
Последовательности могут состоять из произвольных символов. Речь идет о
минимальном периоде.
|
|
Сложность: 5- Классы: 10,11
|
На плоскости даны оси координат с одинаковым, но не
обозначенным масштабом и график функции
y= sin x, x
(0;α).
Как с помощью циркуля и линейки построить касательную к этому графику
в заданной его точке, если:
а)
α
(
;π)
;
б)
α
(0
;
)
?
Страница:
<< 1 2 3 4
5 >> [Всего задач: 22]