Страница:
<< 1 2 3 4 [Всего задач: 17]
|
|
Сложность: 6 Классы: 8,9,10,11
|
Женя красила шарообразное яйцо последовательно в пяти
красках, погружая его в стакан с очередной краской так, чтобы
окрашивалась ровно половина площади поверхности яйца (полсферы).
В результате яйцо окрасилось полностью. Докажите, что одна из красок
была лишней, то есть если бы Женя не использовала эту краску, а в
другие краски погружала бы яйцо так же, то оно всё равно окрасилось бы
полностью.
|
|
Сложность: 6 Классы: 10,11
|
Верно ли, что для любых четырёх попарно скрещивающихся прямых можно
так выбрать по одной точке на каждой из них, чтобы эти точки были вершинами а)
трапеции, б) параллелограмма?
Страница:
<< 1 2 3 4 [Всего задач: 17]