ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Бородин П.А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 2 3 4 >> [Всего задач: 17]      



Задача 115510

Темы:   [ Обыкновенные дроби ]
[ Монотонность и ограниченность ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 2+
Классы: 6,7,8,9,10,11

Какое наибольшее значение может принимать выражение     где a, b, c – попарно различные ненулевые цифры?

Прислать комментарий     Решение

Задача 66484

Темы:   [ Квадратный трехчлен (прочее) ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 3
Классы: 8,9,10,11

Графики квадратного трёхчлена и его производной разбивают координатную плоскость на четыре части. Сколько корней имеет этот квадратный трёхчлен?
Прислать комментарий     Решение


Задача 66490

Темы:   [ Задачи-шутки ]
[ Кубические многочлены ]
Сложность: 3
Классы: 8,9,10,11

Решите уравнение $$ x^3+(\log_25+\log_32+\log_53) x=(\log_23+\log_35+\log_52) x^2+1. $$
Прислать комментарий     Решение


Задача 67036

Темы:   [ Задачи на движение ]
[ Монотонность и ограниченность ]
Сложность: 3
Классы: 8,9,10,11

В равнобедренной трапеции проведена диагональ. По контуру каждого из получившихся двух треугольников ползёт свой жук. Скорости движения жуков постоянны и одинаковы. Жуки не меняют направления обхода своих контуров, и по диагонали трапеции они ползут в разных направлениях. Докажите, что при любых начальных положениях жуков они когда-нибудь встретятся.
Прислать комментарий     Решение


Задача 116228

Темы:   [ Неравенство треугольника (прочее) ]
[ Средняя линия треугольника ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 9,10,11

В равнобедренном треугольнике ABC на основании BC взята точка D, а на боковой стороне AB – точки E и M так, что  AM = ME  и отрезок DM параллелен стороне AC. Докажите, что  AD + DE > AB + BE.

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .