Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Серов М.

Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В треугольнике ABC  AB = BC. Из точки E на стороне AB опущен перпендикуляр ED на BC. Оказалось, что  AE = ED.  Найдите угол DAC.

Вниз   Решение


Решите уравнение $$\tan\pi {}x = [\lg \pi^x]-[\lg [\pi^x]],$$ где $[a]$ обозначает наибольшее целое число, не превосходящее $a$.

ВверхВниз   Решение


Через вершины B и C треугольника ABC провели перпендикулярно прямой BC прямые b и c соответственно. Серединные перпендикуляры к сторонам AC и AB пересекают прямые b и c в точках P и Q соответственно. Докажите, что прямая PQ перпендикулярна медиане AM треугольника ABC.

ВверхВниз   Решение


Автор: Серов М.

Пять отрезков таковы, что из любых трех из них можно составить треугольник. Докажите, что хотя бы один из этих треугольников остроугольный.

Вверх   Решение

Все задачи автора

Страница: 1 [Всего задач: 1]      



Задача 57315

Темы:   [ Неравенство треугольника (прочее) ]
[ Теорема косинусов ]
[ Неравенства для остроугольных треугольников ]
[ Алгебраические задачи на неравенство треугольника ]
[ Доказательство от противного ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 5-
Классы: 8,9,10

Автор: Серов М.

Пять отрезков таковы, что из любых трех из них можно составить треугольник. Докажите, что хотя бы один из этих треугольников остроугольный.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .