ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Грибалко А.В.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 57]      



Задача 67258

Темы:   [ Взвешивания ]
[ Раскраски ]
Сложность: 5
Классы: 8,9,10,11

На каждой клетке доски 5×5 лежит по одной монете, все монеты внешне одинаковы. Среди них ровно 2 монеты фальшивые, они одинакового веса и легче настоящих, которые тоже весят одинаково. Фальшивые монеты лежат в клетках, имеющих ровно одну общую вершину. Можно ли за одно взвешивание на чашечных весах без гирь гарантированно найти а) 13 настоящих монет; б) 15 настоящих монет; в) 17 настоящих монет?
Прислать комментарий     Решение


Задача 67268

Тема:   [ Отношение порядка ]
Сложность: 5
Классы: 8,9,10,11

Натуральные числа от 1 до 100 раскрашены в три цвета: 50 чисел – в красный, 25 чисел – в жёлтый и 25 – в зелёный. Известно, что все красные и жёлтые числа можно разбить на 25 троек так, чтобы в каждой тройке было два красных числа и одно жёлтое, которое больше одного красного и меньше другого. Аналогичное утверждение верно для красных и зелёных чисел. Обязательно ли все 100 чисел можно разбить на 25 четвёрок, в каждой из которых два красных числа, одно жёлтое и одно зелёное, при этом жёлтое и зелёное числа лежат между красными?
Прислать комментарий     Решение


Задача 67410

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Оценка + пример ]
Сложность: 5
Классы: 8,9,10,11

На белых клетках шахматной доски 100×100 стоят 100 слонов, среди которых есть белые и чёрные. Они могут делать ходы в любом порядке и бить слонов противоположного цвета. Какого наименьшего числа ходов заведомо достаточно, чтобы на доске остался один слон?
Прислать комментарий     Решение


Задача 67417

Тема:   [ Взвешивания ]
Сложность: 5
Классы: 10,11

На столе лежат $2n$ неразличимых на вид монет. Известно, что $n$ из них весят по 9 г, а остальные $n$ – по 10 г. Требуется разбить их на $n$ пар так, чтобы общий вес каждой пары равнялся 19 г. Докажите, что это можно сделать менее чем за $n$ взвешиваний на чашечных весах без гирь (показывающих, равны ли чаши, а если нет, то какая тяжелее).
Прислать комментарий     Решение


Задача 67462

Темы:   [ Геометрия на клетчатой бумаге ]
[ Теория игр (прочее) ]
[ Раскраски ]
[ Оценка + пример ]
Сложность: 5
Классы: 9,10,11

Петя красит каждую клетку доски $22 \times 22$ в чёрный или белый цвет так, чтобы клетки каждого цвета образовывали многоугольник. Затем Вася разрезает доску на двухклеточные доминошки. Петя стремится к тому, чтобы в итоге получилось как можно больше разноцветных доминошек, а Вася – к тому, чтобы их получилось как можно меньше. Наличие какого наибольшего числа разноцветных доминошек может гарантировать Петя, как бы ни действовал Вася? (Напомним, что граница многоугольника – замкнутая ломаная без самопересечений.)
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 57]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .