ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Грибалко А.В.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 6 7 8 9 10 11 12 [Всего задач: 57]      



Задача 67516

Темы:   [ Геометрия на клетчатой бумаге ]
[ Теория игр (прочее) ]
[ Раскраски ]
[ Оценка + пример ]
Сложность: 5
Классы: 9,10,11

Петя красит каждую клетку доски $2m\times 2n$ в чёрный или белый цвет так, чтобы клетки каждого цвета образовывали многоугольник. Затем Вася разрезает доску на доминошки (прямоугольники из двух клеток). Петя стремится к тому, чтобы в итоге получилось как можно больше двухцветных доминошек, а Вася — к тому, чтобы их получилось как можно меньше. Наличие какого наибольшего числа двухцветных доминошек может гарантировать Петя, как бы ни действовал Вася?
(Напомним, что граница многоугольника — замкнутая ломаная без самопересечений.)
Прислать комментарий     Решение


Задача 111868

Темы:   [ Турниры и турнирные таблицы ]
[ Сочетания и размещения ]
[ Доказательство от противного ]
Сложность: 5
Классы: 9,10,11

В блицтурнире принимали участие  2n + 3  шахматиста. Каждый сыграл с каждым ровно по одному разу. Для турнира был составлен такой график, чтобы игры проводились одна за другой, и чтобы каждый игрок после сыгранной партии отдыхал не менее n игр. Докажите, что один из шахматистов, игравших в первой партии, играл и в последней.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 [Всего задач: 57]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .