Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 57]
а) Существуют ли такие натуральные числа a, b, c, что из двух чисел a/b + b/c + c/a и b/a + c/b + a/c ровно одно – целое?
б) Докажите, что если они оба целые, то a = b = c.
|
|
|
Сложность: 4 Классы: 9,10,11
|
Целые числа a, b и c таковы, что числа a/b + b/c + c/a и a/с + с/b + b/a тоже целые. Докажите, что |a| = |b| = |c|.
|
|
|
Сложность: 4 Классы: 8,9,10,11
|
Даны N синих и N красных палочек, причём сумма длин синих палочек равна сумме длин красных. Известно, что из синих палочек можно сложить N-угольник, и из красных – тоже. Всегда ли можно выбрать одну синюю и одну красную палочки и перекрасить их (синюю – в красный цвет, а красную – в синий) так, что снова из синих палочек можно будет сложить N-угольник, и из красных – тоже? Решите задачу
а) для N = 3;
б) для произвольного натурального N > 3.
|
|
|
Сложность: 4 Классы: 10,11
|
На плоскости лежит игла. Разрешается поворачивать иглу на 45° вокруг любого из её концов.
Можно ли, сделав несколько таких поворотов, добиться того, чтобы игла вернулась на исходное место, но при этом её концы поменялись местами?
|
|
|
Сложность: 4 Классы: 8,9,10,11
|
Петя и Вася независимо друг от друга разбивают белую
клетчатую доску $100\times 100$ на произвольные группы клеток, каждая
из чётного (но не обязательно все из одинакового) числа клеток, каждый
– на свой набор групп. Верно ли, что после этого всегда можно
покрасить по половине клеток в каждой группе из разбиения Пети в
чёрный цвет так, чтобы в каждой группе из разбиения Васи было поровну
чёрных и белых клеток?
Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 57]