ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Алексей Яковлевич Канель-Белов (род. 1963) - известный российский математик, педагог и составитель олимпиадных задач. Доктор физико-математических наук, профессор МИОО и Бар-Иланского университета. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Найдите все такие пары (x, y) целых чисел, что 1 + 2x + 22x+1 = y². |
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 101]
Найдите все такие пары (x, y) целых чисел, что 1 + 2x + 22x+1 = y².
Пусть P(x) – многочлен степени n > 1 с целыми коэффициентами, k – произвольное натуральное число. Рассмотрим многочлен
a и b – натуральные числа. Покажите, что если 4ab – 1 делит (4a² – 1)², то a = b.
Найдите все такие натуральные (a, b), что a2 делится на натуральное число 2ab2 – b3 + 1.
Пусть $x_1 \le \dots \le x_n$. Докажите неравенство $$\bigg( \sum \limits_{i,j=1}^n |x_i-x_j|\bigg)^2 \le \frac{2 (n^2-1)}{3} \sum \limits_{i,j=1}^n (x_i-x_j)^2.$$ Докажите, что оно обращается в равенство только если числа $x_1, \dots, x_n$ образуют арифметическую прогрессию.
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 101]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке