ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Алексей Яковлевич Канель-Белов (род. 1963) - известный российский математик, педагог и составитель олимпиадных задач. Доктор физико-математических наук, профессор МИОО и Бар-Иланского университета. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Существует ли ломаная, пересекающая все рёбра картинки по одному разу? Треугольник A1B1C1 получен из треугольника
ABC поворотом на угол |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 101]
На отрезке [a, b] отмечено несколько синих и красных точек. Две точки одного цвета, между которыми нет отмеченных точек, разрешается стереть. Разрешается также отметить две точки одного цвета, красные или синие, так, чтобы между ними не было других отмеченных точек. Первоначально было отмечено две точки: a – синяя и b – красная. Можно ли сделать несколько разрешенных пребразований так, чтобы в результате было опять две отмеченные точки: a – красная и b – синяя?
На доску последовательно записываются натуральные числа. На n-м шаге (когда написаны числа a1, a2, ..., an–1) пишется любое число, которое нельзя представить в виде суммы a1k1 + a2k2 + ... + an–1kn–1, где ki – целые неотрицательные числа (на a1 никаких ограничений не накладывается). Доказать, что процесс написания чисел не может быть бесконечным.
В ящиках лежат орехи. Известно, что в среднем в каждом ящике 10 орехов, а среднее арифметическое квадратов чисел орехов в ящиках меньше 1000. Докажите, что по крайней мере 10% ящиков не пустые.
Периоды двух последовательностей – 7 и 13. Какова максимальная длина начального куска, который может у них совпадать?
Периоды двух последовательностей – m и n – взаимно простые числа. Какова максимальная длина начального куска, который может у них совпадать?
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 101]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке