ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Агаханов Н.Х.

Назар Хангельдыевич Агаханов (р. 1954) - доцент кафедры высшей математики МФТИ, кандидат физико-математических наук. C 1974 года член жюри Всесоюзной (в 1992 году - Межреспубликанской, c 1993 года - Всероссийской олимпиады школьников по математике). Лидер национальной команды России на международной математической олимпиаде. Председатель Консультативного совета международной математической олимпиады.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 105]      



Задача 109723

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Квадратные уравнения и системы уравнений ]
Сложность: 4-
Классы: 8,9

Различные числа a, b и c таковы, что уравнения  x² + ax + 1 = 0  и  x² + bx + c = 0  имеют общий действительный корень. Кроме того, общий действительный корень имеют уравнения  x² + x + a = 0  и  x² + cx + b = 0.  Найдите сумму  a + b + c.

Прислать комментарий     Решение

Задача 109766

Темы:   [ Числовые таблицы и их свойства ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 7,8,9

Можно ли в клетках таблицы 2002×2002 расставить натуральные числа от 1 до 2002² так, чтобы для каждой клетки этой таблицы из строки или из столбца, содержащих эту клетку, можно было бы выбрать тройку чисел, одно из которых равно произведению двух других?

Прислать комментарий     Решение

Задача 109787

Темы:   [ Рациональные и иррациональные числа ]
[ Тождественные преобразования ]
Сложность: 4-
Классы: 9,10,11

Числовое множество M, содержащее 2003 различных числа, таково, что для каждых двух различных элементов a, b из M число
   рационально. Докажите, что для любого a из M число    рационально.

Прислать комментарий     Решение

Задача 109942

Темы:   [ Процессы и операции ]
[ Методы решения задач с параметром ]
[ Тригонометрические уравнения ]
Сложность: 4-
Классы: 9,10,11

Пусть f(x)=x2+ax+b cos x . Найдите все значения параметров a и b , при которых уравнения f(x)=0 и f(f(x))=0 имеют совпадающие непустые множества действительных корней.
Прислать комментарий     Решение


Задача 109958

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Четность и нечетность ]
[ Перебор случаев ]
Сложность: 4-
Классы: 8,9,10

Существуют ли такие n-значные числа M и N, что все цифры M – чётные, все цифры N – нечётные, каждая цифра от 0 до 9 встречается в десятичной записи M или N хотя бы один раз и M делится на N?

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 105]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .