ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Лев Александрович Емельянов - старший преподаватель Калужского государственного педагогического университета им. К.Э. Циолковского (КГПУ), член жюри Всероссийской олимпиады школьников по математике. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Можно ли вместо звёздочек вставить в выражение НОК(*, *, *) – НОК(*, *, *) = 2009 в некотором порядке шесть последовательных натуральных чисел так, чтобы равенство стало верным? |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 90]
Про три положительных числа известно, что если выбрать одно из них и прибавить к нему сумму квадратов двух других, то получится одна и та же сумма, независимо от выбранного числа. Верно ли, что все числа равны?
Про три положительных числа известно, что если выбрать одно из них и прибавить к нему сумму квадратов двух других, то получится одна и та же сумма, независимо от выбранного числа. Докажите, что какие-то два из исходных чисел совпадают.
Фокусник выкладывает 36 карт в виде квадрата 6×6 (в 6 столбцов по 6 карт) и просит Зрителя мысленно выбрать карту и запомнить столбец, её содержащий. После этого Фокусник определённым образом собирает карты, снова выкладывает в виде квадрата 6×6 и просит Зрителя назвать номера столбцов, содержащих выбранную карту в первый и второй раз. После ответа Зрителя Фокусник безошибочно отгадывает карту. Как действовать Фокуснику, чтобы фокус гарантированно удался?
В остроугольном треугольнике ABC H – ортоцентр; A1, B1, C1 – точки касания вписанной окружности с BC, CA, AB соответственно; EA, EB, EC – середины AH, BH, CH соответственно; окружность с центром EA, проходящая через A, повторно пересекает биссектрису угла A в точке A2; точки B2, C2 определены аналогично. Докажите, что треугольники A1B1C1 и A2B2C2 подобны.
В четырёхугольнике ABCD стороны AD и BC параллельны.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 90]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке