Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 90]
Докажите, что сумма длин любых двух медиан произвольного треугольника
а) не больше ¾ P, где P – периметр этого треугольника;
б) не меньше ¾ p, где p – полупериметр этого треугольника.
На клетчатой бумаге отметьте три узла так, чтобы в образованном ими треугольнике сумма двух меньших медиан равнялась полупериметру.
|
|
Сложность: 3+ Классы: 8,9,10
|
Оклейте куб в один слой пятью равновеликими выпуклыми пятиугольниками.
|
|
Сложность: 3+ Классы: 10,11
|
Вневписанные окружности касаются сторон AC и BC треугольника ABC в точках K и L. Докажите, что прямая, соединяющая середины KL и AB,
а) делит периметр треугольника ABC пополам;
б) параллельна биссектрисе угла ACB.
|
|
Сложность: 3+ Классы: 10,11
|
Докажите неравенство
при любых натуральных n и k.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 90]