ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||
Версия для печати
Убрать все задачи Общие касательные к описанной и вневписанной окружностям треугольника $ABC$ пересекают прямые $BC$, $CA$, $AB$ в точках $A_1$, $B_1$, $C_1$ и $A_2$, $B_2$, $C_2$ соответственно. Треугольник $\Delta_1$ образован прямыми $AA_1$, $BB_1$ и $CC_1$, а треугольник $\Delta_2$ – прямыми $AA_2$, $BB_2$ и $CC_2$. Докажите, что радиусы описанных окружностей этих треугольников равны. |
Страница: 1 [Всего задач: 1]
В углу шахматной доски стоит фигура. Первый игрок может ходить ею два раза подряд как обычным конём (на два поля в одном направлении и на одно – в перпендикулярном), а второй – один раз как конём с удлинённым ходом (на три поля в одном направлении и на одно – в перпендикулярном). Так они ходят по очереди. Первый стремится к тому, чтобы поставить фигуру в противоположный угол, а второй – ему помешать. Кто из них выигрывает (размеры доски – n×n, где n > 3)?
Страница: 1 [Всего задач: 1]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке