Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 50]
|
|
Сложность: 3 Классы: 8,9,10
|
Дан выпуклый шестиугольник ABCDEF. Известно, что ∠FAE = ∠BDC, а четырёхугольники ABDF и ACDE являются вписанными.
Докажите, что прямые BF и CE параллельны.
Дан треугольник ABC. M – середина стороны BC, а P – проекция вершины B на серединный перпендикуляр к AC. Прямая PM пересекает сторону AB в точке Q. Докажите, что треугольник QPB равнобедренный.
|
|
Сложность: 3+ Классы: 10,11
|
Дан выпуклый четырёхугольник ABCD. Известно, что ∠ABD + ∠ACD > ∠BAC + ∠BDC. Докажите, что SABD + SACD > SBAC + SBDC.
Даны две единичные окружности ω1 и ω2, пересекающиеся в точках A и B. На окружности ω1 взяли произвольную точку M, а на окружности ω2 точку N. Через точки M и N провели ещё две единичные окружности ω3 и ω4. Обозначим повторное пересечение ω1 и ω3 через C, повторное пересечение окружностей ω2 и ω4 – через D. Докажите, что ACBD – параллелограмм.
На сторонах AB и AC треугольника ABC выбрали точки P и Q так, что PB = QC. Докажите, что PQ < BC.
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 50]