ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Акопян А.В.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 50]      



Задача 116588

Темы:   [ Шестиугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3
Классы: 8,9,10

Дан выпуклый шестиугольник ABCDEF. Известно, что  ∠FAE = ∠BDC,  а четырёхугольники ABDF и ACDE являются вписанными.
Докажите, что прямые BF и CE параллельны.

Прислать комментарий     Решение

Задача 64906

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Симметрия помогает решить задачу ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9

Дан треугольник ABC. M – середина стороны BC, а P – проекция вершины B на серединный перпендикуляр к AC. Прямая PM пересекает сторону AB в точке Q. Докажите, что треугольник QPB равнобедренный.

Прислать комментарий     Решение

Задача 65022

Темы:   [ Четырехугольник (неравенства) ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 10,11

Дан выпуклый четырёхугольник ABCD. Известно, что  ∠ABD + ∠ACD > ∠BAC + ∠BDC.  Докажите, что  SABD + SACD > SBAC + SBDC.

Прислать комментарий     Решение

Задача 65032

Темы:   [ Пересекающиеся окружности ]
[ Три окружности одного радиуса ]
[ Векторы помогают решить задачу ]
Сложность: 3+
Классы: 8,9

Даны две единичные окружности ω1 и ω2, пересекающиеся в точках A и B. На окружности ω1 взяли произвольную точку M, а на окружности ω2 точку N. Через точки M и N провели ещё две единичные окружности ω3 и ω4. Обозначим повторное пересечение ω1 и ω3 через C, повторное пересечение окружностей ω2 и ω4 – через D. Докажите, что ACBD – параллелограмм.

Прислать комментарий     Решение

Задача 65033

Темы:   [ Против большей стороны лежит больший угол ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

На сторонах AB и AC треугольника ABC выбрали точки P и Q так, что  PB = QC.  Докажите, что  PQ < BC.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 50]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .