ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Четырёхугольник ABCD с попарно непараллельными сторонами описан около окружности с центром O. Докажите, что точка O совпадает с точкой пересечения средних линий четырёхугольника ABCD тогда и только тогда, когда OA·OC = OB·OD. Дан треугольник ABC. Точки A1, B1 и
C1 – середины сторон BC, AC и AB соответственно.
На продолжении отрезка C1B1 отложен отрезок B1K
по длине равный |
Страница: 1 [Всего задач: 3]
Дан треугольник ABC. Точки A1, B1 и
C1 – середины сторон BC, AC и AB соответственно.
На продолжении отрезка C1B1 отложен отрезок B1K
по длине равный
В треугольнике ABC угол C – прямой. На стороне AC
нашлась такая точка D, а на отрезке BD – такая точка K, что ∠B = ∠KAD = ∠AKD.
Дана таблица n×n, заполненная числами по следующему правилу: в клетке, стоящей в i-й строке и j-м столбце таблицы записано число
Страница: 1 [Всего задач: 3]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке