Страница: << 1 2 3 4 5 >> [Всего задач: 24]
В трапеции ABCD основание BC в два раза меньше основания AD. Из вершины D опущен перпендикуляр DE на сторону AB. Докажите, что СЕ = CD.
|
|
Сложность: 3 Классы: 8,9,10,11
|
Дан прямоугольный треугольник $ABC$ с прямым углом $C$, вне треугольника взята точка $D$, так что $\angle ADC=\angle BAC$ и отрезок $CD$ пересекает гипотенузу $AB$ в точке $E$. Известно, что расстояние от точки $E$ до катета $AC$ равно радиусу описанной окружности треугольника $ADE$. Найдите углы треугольника $ABC$.
В пятиугольнике ABCDE углы ABC и AED – прямые, AB = AE и BC = CD = DE. Диагонали BD и CE пересекаются в точке F.
Докажите, что FA = AB.
|
|
Сложность: 3+ Классы: 8,9,10
|
Вокруг равнобедренного треугольника ABC с основанием AB описана окружность и в точке B проведена касательная к ней. Из точки C проведён перпендикуляр CD к этой касательной, также проведены высоты AE и BF. Докажите, что точки D, E, F лежат на одной прямой.
Вокруг прямоугольного треугольника ABC с прямым углом C описана окружность, на меньших дугах AC и BC взяты их середины – K и P соответственно. Отрезок KP пересекает катет AC в точке N. Центр вписанной окружности треугольника ABC – I. Найти угол NIC.
Страница: << 1 2 3 4 5 >> [Всего задач: 24]