ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Кожевников П.А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 79]      



Задача 98549

Темы:   [ Неопределено ]
[ Пересекающиеся окружности ]
[ ГМТ - окружность или дуга окружности ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 10,11

На плоскости даны три красные точки, три синие точки и ещё точка O, лежащая как внутри треугольника с красными вершинами, так и внутри треугольника с синими вершинами, причём расстояние от O до любой красной точки меньше расстояния от O до любой синей точки. Могут ли все красные и все синие точки лежать на одной и той же окружности?

Прислать комментарий     Решение

Задача 98567

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Выигрышные и проигрышные позиции ]
Сложность: 3+
Классы: 8,9

На клетчатой доске размером 23×23 клетки стоят четыре фишки: в левом нижнем и в правом верхнем углах доски – по белой фишке, а в левом верхнем и в правом нижнем углах - по чёрной. Белые и чёрные фишки ходят по очереди, начинают белые. Каждым ходом одна из фишек сдвигается на любую соседнюю (по стороне) свободную клетку. Белые фишки стремятся попасть в две соседние по стороне клетки. Могут ли чёрные им помешать?

Прислать комментарий     Решение

Задача 98622

Темы:   [ Куб ]
[ Наглядная геометрия в пространстве ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 10,11

Можно ли поверхность куба оклеить без пропусков и наложений тремя треугольниками?

Прислать комментарий     Решение

Задача 108080

Темы:   [ Пересекающиеся окружности ]
[ Общая касательная к двум окружностям ]
[ Угол между касательной и хордой ]
Сложность: 3+
Классы: 8,9

Две окружности пересекаются в точках A и B. К ним проведена общая касательная, которая касается первой окружности в точке C, а второй – в точке D. Пусть B – ближайшая к прямой CD точка пересечения окружностей. Прямая CB второй раз пересекает вторую окружность в точке E. Докажите, что AD – биссектриса угла CAE.

Прислать комментарий     Решение

Задача 108109

Темы:   [ Пересекающиеся окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

Две окружности пересекаются в точках P и Q. Прямая пересекает эти окружности последовательно в точках A, B, C и D, как показано на рисунке.

Докажите, что  ∠APB = ∠CQD.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 79]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .