Страница:
<< 1 2 3 [Всего задач: 13]
|
|
Сложность: 4 Классы: 8,9,10,11
|
Существуют ли такое натуральное $n$ и такой многочлен $P(x)$ степени $n$, имеющий $n$ различных действительных корней, что при всех действительных $x$ выполнено равенство
а) $P(x)P(x+1)=P(x^2)$;
б) $P(x)P(x+1)=P(x^2+1)$?
|
|
Сложность: 4 Классы: 9,10,11
|
Докажите, что для любых различных натуральных чисел $m$ и $n$ справедливо неравенство $|\sqrt[n]{m}-\sqrt[m]{n}|>\frac{1}{mn}$.
|
|
Сложность: 4 Классы: 10,11
|
Пользуясь равенством $\lg11=1{,}0413\ldots$, найдите наименьшее число $n>1$, для которого среди $n$-значных чисел нет ни одного, равного некоторой натуральной степени числа 11.
Страница:
<< 1 2 3 [Всего задач: 13]