Страница:
<< 1 2
3 >> [Всего задач: 13]
|
|
Сложность: 3+ Классы: 10,11
|
Какое наибольшее количество множителей вида можно вычеркнуть в левой части уравнения
так, чтобы число его натуральных корней не изменилось?
|
|
Сложность: 3+ Классы: 9,10,11
|
Даны две непостоянные прогрессии (an) и (bn), одна из которых арифметическая, а другая – геометрическая. Известно, что a1 = b1, a2 : b2 = 2 и
a4 : b4 = 8. Чему может быть равно отношение a3 : b3?
|
|
Сложность: 3+ Классы: 5,6,7
|
Два приведённых квадратных трёхчлена имеют общий корень, а дискриминант их суммы равен сумме их дискриминантов.
Докажите, что тогда дискриминант хотя бы одного из этих двух трёхчленов равен нулю.
|
|
Сложность: 4- Классы: 9,10,11
|
Сравните числа
|
|
Сложность: 4- Классы: 5,6,7
|
Найдите все пары простых чисел p и q, обладающие следующим свойством: 7p + 1 делится на q, а 7q + 1 делится на p.
Страница:
<< 1 2
3 >> [Всего задач: 13]