ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Радзивиловский Л.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 2]      



Задача 66180

Темы:   [ Куб ]
[ Правильные многогранники. Двойственность и взаимосвязи ]
[ Расстояние между двумя точками. Уравнение сферы ]
Сложность: 3+
Классы: 10,11

Можно ли вписать октаэдр в куб так, чтобы вершины октаэдра находились на рёбрах куба?

Прислать комментарий     Решение

Задача 105118

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Выпуклые тела ]
[ Тетраэдр (прочее) ]
[ Параллельный перенос ]
[ Движение помогает решить задачу ]
[ Индукция в геометрии ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5+
Классы: 10,11

Докажите, что в пространстве существует такое расположение 2001 выпуклого многогранника, что никакие три из многогранников не имеют общих точек, а каждые два касаются друг друга (то есть имеют хотя бы одну граничную точку, но не имеют общих внутренних точек).

Прислать комментарий     Решение

Страница: 1 [Всего задач: 2]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .