ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Ляшко О.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 2]      



Задача 109607

Темы:   [ Свойства коэффициентов многочлена ]
[ Симметрия и инволютивные преобразования ]
[ Подсчет двумя способами ]
Сложность: 5
Классы: 9,10,11

Даны непостоянные многочлены P(x) и Q(x), у которых старшие коэффициенты равны 1.
Докажите, что сумма квадратов коэффициентов многочлена P(x)Q(x) не меньше суммы квадратов свободных членов P(x) и Q(x).

Прислать комментарий     Решение

Задача 109517

Темы:   [ Математическая логика (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Рекуррентные соотношения (прочее) ]
[ Оценка + пример ]
Сложность: 5+
Классы: 9,10,11

Автор: Ляшко О.

За круглым столом сидит компания из тридцати человек. Каждый из них либо дурак, либо умный. Всех сидящих спрашивают: Кто Ваш сосед справа – умный или дурак? В ответ умный говорит правду, а дурак может сказать как правду, так и ложь. Известно, что количество дураков не превосходит F . При каком наибольшем значении F всегда можно, зная эти ответы, указать на умного человека в этой компании?
Прислать комментарий     Решение


Страница: 1 [Всего задач: 2]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .