Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 33]
|
|
Сложность: 3 Классы: 8,9,10
|
В остроугольном треугольнике ABC проведены биссектриса AD и высота BE. Докажите, что ∠CED > 45°.
|
|
Сложность: 3+ Классы: 9,10,11
|
Дан правильный 12-угольник A1A2...A12.
Можно ли из 12 векторов выбрать семь, сумма которых равна нулевому вектору?
|
|
Сложность: 3+ Классы: 7,8,9
|
Натуральные числа от 1 до 200 разбили на 50 множеств.
Докажите, что в одном из них найдутся три числа, являющиеся длинами сторон некоторого треугольника.
На сторонах AB и BC треугольника ABC выбраны точки K и M соответственно так, что KM || AC. Отрезки AM и KC пересекаются в точке O. Известно, что AK = AO и KM = MC. Докажите, что AM = KB.
|
|
Сложность: 3+ Классы: 7,8,9
|
Петя задумал натуральное число и для каждой пары его цифр выписал на доску
их разность. После этого он стер некоторые разности, и на доске остались числа 2, 0, 0, 7.
Какое наименьшее число мог задумать Петя?
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 33]