ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи У двух человек было два квадратных торта. Каждый сделал на своём торте по 2 прямолинейных разреза от края до края. При этом у одного получилось три куска, а у другого — четыре. Как это могло быть? В трёх вершинах квадрата находятся три кузнечика. Они играют в чехарду, то есть прыгают друг через друга. При этом, если кузнечик A прыгает через кузнечика B, то после прыжка он оказывается от B на том же расстоянии, что и до прыжка, и, естественно, на той же прямой. Может ли один из них попасть в четвёртую вершину квадрата? Дан прямоугольный треугольник $ABC$ с прямым углом $C$. Прямая проходящая через середину его высоты $CH$ и вершину $A$ пересекает $CB$ в точке $K$. Пусть $L$ – середина $BC$, а $T$ – точка на отрезке $AB$ такая, что $\angle ATK=\angle LTB$. Известно, что $BC=1$. Найдите периметр треугольника $KTL$. |
Страница: 1 2 3 4 5 >> [Всего задач: 22]
В треугольнике $ABC$ $AA_1$, $CC_1$ – высоты, $P$ – произвольная точка на стороне $BC$. Точка $Q$ на прямой $AB$ такова, что $QP=PC_1$, а точка $R$ на прямой $AC$ такова, что $RP=CP$. Докажите, что четырехугольник $QA_1RA$ вписанный.
В параллелограмме $ABCD$ точки $E$ и $F$ выбираются на сторонах $BC$ и $AD$ соответственно так, что $EF=ED=DC$. Пусть $M$ – середина $BE$, а $MD$ пересекает $EF$ в точке $G$. Докажите, что углы $EAC$ и $GBD$ равны.
Выпуклый четырехугольник $ABCD$ таков, что $\angle BAD = 2 \angle BCD$ и $AB = AD$. Пусть $P$ – такая точка, что $ABCP$ – параллелограмм. Докажите, что $CP=DP$.
Дан прямоугольный треугольник $ABC$ с прямым углом $C$. Прямая проходящая через середину его высоты $CH$ и вершину $A$ пересекает $CB$ в точке $K$. Пусть $L$ – середина $BC$, а $T$ – точка на отрезке $AB$ такая, что $\angle ATK=\angle LTB$. Известно, что $BC=1$. Найдите периметр треугольника $KTL$.
Дана равнобокая трапеция $ABCD$ ($AB=CD$). На описанной около неё окружности выбирается точка $P$ так, что отрезок $CP$ пересекает основание $AD$ в точке $Q$. Пусть $L$ – середина $QD$. Докажите, что длина диагонали трапеции не превосходит суммы расстояний от середин её боковых сторон до любой точки прямой $PL$.
Страница: 1 2 3 4 5 >> [Всего задач: 22]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке