ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Александр Матвеев |
|||||||||||||||||||||||||||||||||||||||
Страница: 1 [Всего задач: 3]
Дан выпуклый четырёхугольник $ABCD$. Точки $X$ и $Y$ лежат на продолжениях за точку $D$ сторон $CD$ и $AD$ соответственно, причем $DX=AB$ и $DY=BC$. Аналогично, точки $Z$ и $T$ лежат на продолжениях за точку $B$ сторон $CB$ и $AB$, причем $BZ=AD$ и $BT=DC$. Пусть $M_1$ – середина $XY$, $M_2$ – середина $ZT$. Докажите, что прямые $DM_1$, $BM_2$ и $AC$ пересекаются в одной точке.
Дан отрезок $AB$. Точки $X, Y, Z$ в пространстве выбираются так, чтобы $ABX$
был правильным треугольником, а $ABYZ$ – квадратом.
Выпуклый четырехугольник $ABCD$ таков, что $\angle B=\angle D$. Докажите, что середина диагонали $BD$ лежит на общей внутренней касательной к окружностям, вписанным в треугольники $ABC$ и $ACD$.
Страница: 1 [Всего задач: 3]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке