ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Яковлев Б.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 1]      



Задача 67121

Темы:   [ Поворотная гомотетия (прочее) ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 4
Классы: 8,9,10,11

Автор: Яковлев Б.

Дан равнобедренный треугольник $ABC$, $AB=AC$, $P$ – середина меньшей дуги $AB$ окружности $ABC$, $Q$ – середина отрезка $AC$. Окружность с центром в $O$, описанная около $APQ$, вторично пересекает $AB$ в точке $K$. Докажите, что прямые $PO$ и $KQ$ пересекаются на биссектрисе угла $ABC$.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .