Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Терешин А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 4]      



Задача 67231

Темы:   [ Величина угла между двумя хордами и двумя секущими ]
[ Подобные треугольники (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Терешин А.

Биссектрисы углов $A$, $B$ и $C$ треугольника $ABC$ вторично пересекают описанную окружность в точках $A_1$, $B_1$, $C_1$ соответственно. Точки $A_2$, $B_2$; $C_2$ – середины отрезков $AA_1$, $BB_1$, $CC_1$ соответственно. Докажите, что треугольники $A_1B_1C_1$ и $A_2B_2C_2$ подобны.
Прислать комментарий     Решение


Задача 67250

Темы:   [ Вспомогательные подобные треугольники ]
[ Вневписанные окружности ]
Сложность: 4
Классы: 9,10,11

Автор: Терешин А.

В треугольнике $ABC$ вписанная окружность касается стороны $BC$ в точке $D$. Точка $M$ – середина дуги $BAC$ описанной окружности треугольника. Точки $P$ и $Q$ – проекции точки $M$ на внешние биссектрисы углов $B$ и $C$. Докажите, что прямая $PQ$ делит отрезок $AD$ пополам.
Прислать комментарий     Решение


Задача 67343

Темы:   [ Преобразования плоскости (прочее) ]
[ Теорема синусов ]
Сложность: 5-
Классы: 8,9,10,11

Автор: Терешин А.

Треугольник $ABC$ вписан в окружность $\omega$. Точка $T$ на прямой $BC$ выбрана так, что прямая $AT$ касается $\omega$. Биссектриса угла $BAC$ пересекает отрезок $BC$ в точке $L$, а окружность $\omega$ в точке $A_0$. Прямая $TA_0$ пересекает $\omega$ в точке $P$. Точка $K$ на отрезке $BC$ такова, что $BL=CK$. Докажите, что $\angle BAP=\angle CAK$.
Прислать комментарий     Решение


Задача 67347

Темы:   [ Гомотетия помогает решить задачу ]
[ Изогональное сопряжение ]
Сложность: 5
Классы: 9,10,11

Автор: Терешин А.

Вписанная окружность $\omega$ прямоугольного треугольника $ABC$ касается окружности, проходящей через середины его сторон, в точке $F$. Из середины $O$ гипотенузы $AB$ проведена касательная $OE$ к $\omega$, отличная от $AB$. Докажите, что $CE=CF$.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .